Title: | Analysis and Visualisation of Hydrogen/Deuterium Exchange Mass Spectrometry Data |
---|---|
Description: | Functions for processing, analysis and visualization of Hydrogen Deuterium eXchange monitored by Mass Spectrometry experiments (HDX-MS) (10.1093/bioinformatics/btaa587). 'HaDeX' introduces a new standardized and reproducible workflow for the analysis of the HDX-MS data, including novel uncertainty intervals. Additionally, it covers data exploration, quality control and generation of publication-quality figures. All functionalities are also available in the in-built 'Shiny' app. |
Authors: | Weronika Puchala [cre, aut]
|
Maintainer: | Weronika Puchala <[email protected]> |
License: | GPL-3 |
Version: | 1.2.2 |
Built: | 2025-02-14 04:27:22 UTC |
Source: | https://github.com/cran/HaDeX |
The HaDeX
package is a toolbox for the analysis of HDX-MS data.
Weronika Puchala, Michal Burdukiewicz.
Returns relation with confidence limits for each peptide.
add_stat_dependency( calc_dat, confidence_limit = 0.98, theoretical = FALSE, relative = TRUE )
add_stat_dependency( calc_dat, confidence_limit = 0.98, theoretical = FALSE, relative = TRUE )
calc_dat |
processed data from DynamX file - using |
confidence_limit |
confidence limit chosen by user - from range [0, 1]. |
theoretical |
logical value to determine if the plot is theoretical or not. |
relative |
logical value to determine if values are relative or absolute. |
...
calc_dat extended by column specifying if given peptide is relevant in given confidence limit. The value of the confidence limit is added as an attribute - as well as parameters used to calculate (theoretical/relative)
#load example data dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) # prepate dataset for states `CD160` and `CD160_HVEM` in given time parameters calc_dat <- prepare_dataset(dat, in_state_first = "CD160_0.001", chosen_state_first = "CD160_1", out_state_first = "CD160_1440", in_state_second = "CD160_HVEM_0.001", chosen_state_second = "CD160_HVEM_1", out_state_second = "CD160_HVEM_1440") # add calculated confidence limits for prepared data add_stat_dependency(calc_dat, confidence_limit = 0.98, theoretical = FALSE, relative = TRUE)
#load example data dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) # prepate dataset for states `CD160` and `CD160_HVEM` in given time parameters calc_dat <- prepare_dataset(dat, in_state_first = "CD160_0.001", chosen_state_first = "CD160_1", out_state_first = "CD160_1440", in_state_second = "CD160_HVEM_0.001", chosen_state_second = "CD160_HVEM_1", out_state_second = "CD160_HVEM_1440") # add calculated confidence limits for prepared data add_stat_dependency(calc_dat, confidence_limit = 0.98, theoretical = FALSE, relative = TRUE)
Calculates confidence limit values for prepared dataset, based on chosen parameters.
calculate_confidence_limit_values( calc_dat, confidence_limit = 0.98, theoretical = FALSE, relative = TRUE )
calculate_confidence_limit_values( calc_dat, confidence_limit = 0.98, theoretical = FALSE, relative = TRUE )
calc_dat |
processed data from DynamX file - using prepare_dataset |
confidence_limit |
confidence limit chosen by user - from range [0, 1]. |
theoretical |
logical value to determine if plot is theoretical or not. |
relative |
logical value to determine if values are relative or absolute. |
...
range of confidence limit interval
Houde, D., Berkowitz, S.A., and Engen, J.R. (2011). The Utility of Hydrogen/Deuterium Exchange Mass Spectrometry in Biopharmaceutical Comparability Studies. J Pharm Sci 100, 2071–2086.
# load example data dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) # prepare dataset for states `CD160` and `CD160_HVEM` in given time parameters calc_dat <- prepare_dataset(dat, in_state_first = "CD160_0.001", chosen_state_first = "CD160_1", out_state_first = "CD160_1440", in_state_second = "CD160_HVEM_0.001", chosen_state_second = "CD160_HVEM_1", out_state_second = "CD160_HVEM_1440") # calculates confidence limits for prepared data calculate_confidence_limit_values(calc_dat = calc_dat, confidence_limit = 0.99, theoretical = FALSE, relative = TRUE)
# load example data dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) # prepare dataset for states `CD160` and `CD160_HVEM` in given time parameters calc_dat <- prepare_dataset(dat, in_state_first = "CD160_0.001", chosen_state_first = "CD160_1", out_state_first = "CD160_1440", in_state_second = "CD160_HVEM_0.001", chosen_state_second = "CD160_HVEM_1", out_state_second = "CD160_HVEM_1440") # calculates confidence limits for prepared data calculate_confidence_limit_values(calc_dat = calc_dat, confidence_limit = 0.99, theoretical = FALSE, relative = TRUE)
Calculate kinetics of the hydrogen-deuteration exchange for given peptide.
calculate_kinetics( dat, protein = dat[["Protein"]][1], sequence, state, start, end, time_in, time_out, deut_part = 1 )
calculate_kinetics( dat, protein = dat[["Protein"]][1], sequence, state, start, end, time_in, time_out, deut_part = 1 )
dat |
dat data read by |
protein |
protein value for chosen peptide |
sequence |
sequence of the peptide for which the kinetics is calculated |
state |
state of given sequence |
start |
end of given sequence |
end |
end of given sequence |
time_in |
time in for experimental calculations |
time_out |
time out for experimental calculations |
deut_part |
percentage of deuterium the protein was exposed to, value in range [0, 1] |
The function calculates deuteration data for all available data points
for given peptide.
All four variants (relative & theoretical combinations) of deuteration computations
are supported. Manual correction of percentage of deuterium the protein was exposed
to during the exchange in theoretical calculations is provided.
To visualize obtained data we recommend using plot_kinetics
function.
The first version doesn't support filled Modification and Fragment columns.
data frame with deuteration calculated for all the data points
between time_in and time_out.
The chosen time point for which deuteration in all four variants is calculated
is available in column 'time_chosen'. The rest of
the returned structure is equivalent to structure returned by
calculate_state_deuteration
.
read_hdx
calculate_state_deuteration
plot_kinetics
# load example data dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) # calculate data for sequence INITSSASQEGTRLN in state CD160 (kin1 <- calculate_kinetics(dat, protein = "db_CD160", sequence = "INITSSASQEGTRLN", state = "CD160", start = 1, end = 15, time_in = 0.001, time_out = 1440)) # calculate data for sequence INITSSASQEGTRLN in state CD160_HVEM (kin2 <- calculate_kinetics(dat, protein = "db_CD160", sequence = "INITSSASQEGTRLN", state = "CD160_HVEM", start = 1, end = 15, time_in = 0.001, time_out = 1440)) # load extra libraries library(dplyr) library(ggplot2) # plot example - experimental and relative bind_rows(kin1, kin2) %>% plot_kinetics(theoretical = FALSE, relative = TRUE) + labs(title = "Kinetic plot for INITSSASQEGTRLN") # plot example - theoretical and absolute bind_rows(kin1, kin2) %>% plot_kinetics(theoretical = TRUE, relative = FALSE) + labs(title = "Theoretical kinetics plot for INITSSASQEGTRLN")
# load example data dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) # calculate data for sequence INITSSASQEGTRLN in state CD160 (kin1 <- calculate_kinetics(dat, protein = "db_CD160", sequence = "INITSSASQEGTRLN", state = "CD160", start = 1, end = 15, time_in = 0.001, time_out = 1440)) # calculate data for sequence INITSSASQEGTRLN in state CD160_HVEM (kin2 <- calculate_kinetics(dat, protein = "db_CD160", sequence = "INITSSASQEGTRLN", state = "CD160_HVEM", start = 1, end = 15, time_in = 0.001, time_out = 1440)) # load extra libraries library(dplyr) library(ggplot2) # plot example - experimental and relative bind_rows(kin1, kin2) %>% plot_kinetics(theoretical = FALSE, relative = TRUE) + labs(title = "Kinetic plot for INITSSASQEGTRLN") # plot example - theoretical and absolute bind_rows(kin1, kin2) %>% plot_kinetics(theoretical = TRUE, relative = FALSE) + labs(title = "Theoretical kinetics plot for INITSSASQEGTRLN")
Calculates deuteration uptake based on supplied parameters.
calculate_state_deuteration( dat, protein, state, time_in, time_chosen, time_out, deut_part = 1 )
calculate_state_deuteration( dat, protein, state, time_in, time_chosen, time_out, deut_part = 1 )
dat |
data as imported by the |
protein |
protein included in calculations |
state |
state included in calculations |
time_in |
experimental 'time_in' |
time_chosen |
chosen time point |
time_out |
experimental 'time_out' |
deut_part |
percentage of deuterium the protein was exposed to, value in range [0, 1] |
The function calculate_state_deuteration
calculates deuteration for peptides in given protein in given state based
on supplied parameters: 'time_in', 'time_out' and 'time_chosen'. All four variants (combinations of theoretical & relative) are
supplied (mean values and uncertainty). Manual correction of percentage of deuterium the protein was exposed to during the exchange
in theoretical calculations is provided.
Methods of calculation and uncertainty are profoundly discussed in the vignette.
a data.frame
object
read_hdx
calculate_confidence_limit_values
add_stat_dependency
# load example data dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) # calculate deuteration for state "CD160" calculate_state_deuteration(dat, protein = "db_CD160", state = "CD160", time_in = 0, time_chosen = 5.000, time_out = 1440.000)
# load example data dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) # calculate deuteration for state "CD160" calculate_state_deuteration(dat, protein = "db_CD160", state = "CD160", time_in = 0, time_chosen = 5.000, time_out = 1440.000)
Produces comparison_plot based on previously processed data - theoretical or experimental. User can change labels if needed.
comparison_plot( calc_dat, theoretical = FALSE, relative = TRUE, state_first = "state_first", state_second = "state_second" )
comparison_plot( calc_dat, theoretical = FALSE, relative = TRUE, state_first = "state_first", state_second = "state_second" )
calc_dat |
processed data from DynamX file - using prepare_dataset |
theoretical |
logical value to determine if plot is theoretical or not. default : false |
relative |
logical value to determine if values are relative or absolute. default : true |
state_first |
first state name |
state_second |
second state name |
...
This is the first version - multi-state calculations are not supported.
a ggplot
object.
# load example data dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) # prepare dataset for states `CD160` and `CD160_HVEM` in given time parameters calc_dat <- prepare_dataset(dat, in_state_first = "CD160_0.001", chosen_state_first = "CD160_1", out_state_first = "CD160_1440", in_state_second = "CD160_HVEM_0.001", chosen_state_second = "CD160_HVEM_1", out_state_second = "CD160_HVEM_1440") # plot comparison plot - theoretical & relative comparison_plot(calc_dat = calc_dat, theoretical = TRUE, relative = TRUE, state_first = "CD160", state_second = "CD160_HVEM") # plot comparison plot - experimental & relative comparison_plot(calc_dat = calc_dat, theoretical = FALSE, relative = TRUE, state_first = "CD160", state_second = "CD160_HVEM") # plot comparison plot - theoretical & absolute comparison_plot(calc_dat = calc_dat, theoretical = TRUE, relative = FALSE, state_first = "CD160", state_second = "CD160_HVEM") # plot comparison plot - experimental & absolute comparison_plot(calc_dat = calc_dat, theoretical = FALSE, relative = FALSE, state_first = "CD160", state_second = "CD160_HVEM")
# load example data dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) # prepare dataset for states `CD160` and `CD160_HVEM` in given time parameters calc_dat <- prepare_dataset(dat, in_state_first = "CD160_0.001", chosen_state_first = "CD160_1", out_state_first = "CD160_1440", in_state_second = "CD160_HVEM_0.001", chosen_state_second = "CD160_HVEM_1", out_state_second = "CD160_HVEM_1440") # plot comparison plot - theoretical & relative comparison_plot(calc_dat = calc_dat, theoretical = TRUE, relative = TRUE, state_first = "CD160", state_second = "CD160_HVEM") # plot comparison plot - experimental & relative comparison_plot(calc_dat = calc_dat, theoretical = FALSE, relative = TRUE, state_first = "CD160", state_second = "CD160_HVEM") # plot comparison plot - theoretical & absolute comparison_plot(calc_dat = calc_dat, theoretical = TRUE, relative = FALSE, state_first = "CD160", state_second = "CD160_HVEM") # plot comparison plot - experimental & absolute comparison_plot(calc_dat = calc_dat, theoretical = FALSE, relative = FALSE, state_first = "CD160", state_second = "CD160_HVEM")
Launches graphical user interface.
HaDeX_gui(port = getOption("shiny.port"))
HaDeX_gui(port = getOption("shiny.port"))
port |
The TCP port. See |
Any ad-blocking software may cause malfunctions.
Plots the peptide coverage of the protein sequence.
plot_coverage( dat, protein = dat[["Protein"]][1], chosen_state = dat[["State"]][1] )
plot_coverage( dat, protein = dat[["Protein"]][1], chosen_state = dat[["State"]][1] )
dat |
data as imported by the |
protein |
protein to be included in plot |
chosen_state |
sequence states to be included in plot |
The function plot_coverage
plots sequence coverage based on experimental data for chosen protein in chosen state.
Only non-duplicated peptides are shown on the plot, next to each other.
The aim of this plot is to see the dependence between positions of the peptides on the protein sequence. Their position in y-axis does not contain any information.
a ggplot
object.
read_hdx
plot_position_frequency
# load example data dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) # plot coverage with default parameters plot_coverage(dat) # plot coverage with explicit parameters plot_coverage(dat, protein = "db_CD160", chosen_state = "CD160_HVEM")
# load example data dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) # plot coverage with default parameters plot_coverage(dat) # plot coverage with explicit parameters plot_coverage(dat, protein = "db_CD160", chosen_state = "CD160_HVEM")
Plots kinetics of the hydrogen-deuterium exchange for specific peptides.
plot_kinetics(kin_dat, theoretical = FALSE, relative = TRUE)
plot_kinetics(kin_dat, theoretical = FALSE, relative = TRUE)
kin_dat |
calculated kinetic data by |
theoretical |
|
relative |
|
This function visualises the output of the
calculate_kinetics
function.
Based on supplied parameters appropriate columns are chosen for the plot.
The uncertainty associated with each peptide is shown as a ribbon.
Axis are labeled according to the supplied parameters but no title is provided.
If you want to plot data for more then one peptide in one state, join
calculated data by using bind_rows
from dplyr package and
pass the result as kin_dat.
a ggplot
object.
# load example data dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) # calculate data for the sequence INITSSASQEGTRLN in the CD160 state (kin1 <- calculate_kinetics(dat, protein = "db_CD160", sequence = "INITSSASQEGTRLN", state = "CD160", start = 1, end = 15, time_in = 0.001, time_out = 1440)) # calculate data for the sequence INITSSASQEGTRLN in the CD160_HVEM state (kin2 <- calculate_kinetics(dat, protein = "db_CD160", sequence = "INITSSASQEGTRLN", state = "CD160_HVEM", start = 1, end = 15, time_in = 0.001, time_out = 1440)) # load extra packages library(dplyr) # plot a single peptide - theoretical and relative plot_kinetics(kin_dat = kin1, theoretical = TRUE, relative = TRUE) # plot joined data - experimental and absolute bind_rows(kin1, kin2) %>% plot_kinetics(theoretical = FALSE, relative = FALSE)
# load example data dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) # calculate data for the sequence INITSSASQEGTRLN in the CD160 state (kin1 <- calculate_kinetics(dat, protein = "db_CD160", sequence = "INITSSASQEGTRLN", state = "CD160", start = 1, end = 15, time_in = 0.001, time_out = 1440)) # calculate data for the sequence INITSSASQEGTRLN in the CD160_HVEM state (kin2 <- calculate_kinetics(dat, protein = "db_CD160", sequence = "INITSSASQEGTRLN", state = "CD160_HVEM", start = 1, end = 15, time_in = 0.001, time_out = 1440)) # load extra packages library(dplyr) # plot a single peptide - theoretical and relative plot_kinetics(kin_dat = kin1, theoretical = TRUE, relative = TRUE) # plot joined data - experimental and absolute bind_rows(kin1, kin2) %>% plot_kinetics(theoretical = FALSE, relative = FALSE)
Plots the frequency of coverage of protein sequence.
plot_position_frequency( dat, protein = dat[["Protein"]][1], chosen_state = dat[["State"]][1] )
plot_position_frequency( dat, protein = dat[["Protein"]][1], chosen_state = dat[["State"]][1] )
dat |
data as imported by the |
protein |
protein to be included in plot |
chosen_state |
sequence states to be included in plot |
The function plot_position_frequency
plots a histogram of the coverage frequency based on experimental data.
The aim of this plot is to see how many times each position of the sequence was covered (by different peptides).
a ggplot
object.
# load example data dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) # function call with default parameters plot_position_frequency(dat) # function call with explicit parameters plot_position_frequency(dat, chosen_state = "CD160_HVEM")
# load example data dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) # function call with default parameters plot_position_frequency(dat) # function call with explicit parameters plot_position_frequency(dat, chosen_state = "CD160_HVEM")
Calculates values for visualization from input data file - both experimental and theoretical. All parameters are needed.
prepare_dataset( dat, in_state_first, chosen_state_first, out_state_first, in_state_second, chosen_state_second, out_state_second )
prepare_dataset( dat, in_state_first, chosen_state_first, out_state_first, in_state_second, chosen_state_second, out_state_second )
dat |
data frame with data from DynamX file |
in_state_first |
string in form "state_time" for first state in in time |
chosen_state_first |
string in form "state_time" for chosen state in in time |
out_state_first |
string in form "state_time" for first state in out time |
in_state_second |
string in form "state_time" for second state in in time |
chosen_state_second |
string in form "state_time" for second state in chosen time |
out_state_second |
string in form "state_time" for second state in out time |
...
This is the first version - multi-state calculations are not supported.
data frame with calculated values
# load example data dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) # prepare dataset for states `CD160` and `CD160_HVEM` in given time parameters prepare_dataset(dat, in_state_first = "CD160_0.001", chosen_state_first = "CD160_1", out_state_first = "CD160_1440", in_state_second = "CD160_HVEM_0.001", chosen_state_second = "CD160_HVEM_1", out_state_second = "CD160_HVEM_1440")
# load example data dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) # prepare dataset for states `CD160` and `CD160_HVEM` in given time parameters prepare_dataset(dat, in_state_first = "CD160_0.001", chosen_state_first = "CD160_1", out_state_first = "CD160_1440", in_state_second = "CD160_HVEM_0.001", chosen_state_second = "CD160_HVEM_1", out_state_second = "CD160_HVEM_1440")
Checks how the uncertainty changes in a function of 'out_time'.
quality_control(dat, state_first, state_second, chosen_time, in_time)
quality_control(dat, state_first, state_second, chosen_time, in_time)
dat |
data read by |
state_first |
state of the first peptide |
state_second |
state of the second peptide |
chosen_time |
chosen time point |
in_time |
'in' time |
The function calculates mean uncertainty of all peptides and its uncertainty (standard error) based on given 'in_time' and 'chosen_time' as a function of 'out_time'. Both theoretical and experimental results for each state and their difference are supplied for comparison but only experimental calculations depends on 'out_time' variable. The results are either in form of relative or absolute values depending on the 'relative' parameter supplied by the user. This data can be useful for general overview of the experiment and analyse of the chosen time parameters.
data.frame
with mean uncertainty per different 'out_time' value
# load example data dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) # calculate mean uncertainty (result <- quality_control(dat = dat, state_first = "CD160", state_second = "CD160_HVEM", chosen_time = 1, in_time = 0.001)) # load extra libraries library(ggplot2) library(tidyr) library(dplyr) # example of data visualization gather(result, 2:7, key = 'type', value = 'value') %>% filter(startsWith(type, "avg")) %>% ggplot(aes(x = factor(out_time), y = value, group = type)) + geom_line(aes(color = type)) + labs(x = "Out time", y = "Mean uncertainty")
# load example data dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) # calculate mean uncertainty (result <- quality_control(dat = dat, state_first = "CD160", state_second = "CD160_HVEM", chosen_time = 1, in_time = 0.001)) # load extra libraries library(ggplot2) library(tidyr) library(dplyr) # example of data visualization gather(result, 2:7, key = 'type', value = 'value') %>% filter(startsWith(type, "avg")) %>% ggplot(aes(x = factor(out_time), y = value, group = type)) + geom_line(aes(color = type)) + labs(x = "Out time", y = "Mean uncertainty")
Imports data from a HDX-MS file and validates its content.
read_hdx(filename)
read_hdx(filename)
filename |
a file supplied by the user. Formats allowed: .csv, .xlsx and .xls. |
First version accepts files produced by DynamX 3.0 and 2.0 in 'cluster data' format. The function checks if all necessary columns are provided in correct format. The file must include at least two repetitions of the measurement for the uncertainty to be calculated.
dat
- a data.frame
with validated content.
calculate_kinetics
calculate_state_deuteration
plot_coverage
plot_position_frequency
prepare_dataset
quality_control
reconstruct_sequence
# read example data head(read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")))
# read example data head(read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")))
Reconstructs protein sequence from supplied file.
reconstruct_sequence(dat, protein = dat[["Protein"]][1])
reconstruct_sequence(dat, protein = dat[["Protein"]][1])
dat |
data read by |
protein |
the protein of which the structure is to be reconstructed |
The function reconstructs protein sequence from supplied experimental data. If a position is not covered, x is shown. First version doesn't support manual sequence length correction.
reconstructed sequence - character
object.
dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) reconstruct_sequence(dat)
dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) reconstruct_sequence(dat)
Produces Woods' plot based on theoretical or experimental HDX-MS data.
woods_plot( calc_dat, theoretical = FALSE, relative = TRUE, confidence_limit = 0.98, confidence_limit_2 = 0.99 )
woods_plot( calc_dat, theoretical = FALSE, relative = TRUE, confidence_limit = 0.98, confidence_limit_2 = 0.99 )
calc_dat |
data as imported by the |
theoretical |
|
relative |
|
confidence_limit |
confidence limit. |
confidence_limit_2 |
confidence limit 2. |
...
This is the first version - multi-state calculations are not supported.
a ggplot
object.
Woods, V.L., and Hamuro, Y. (2001). High resolution, high-throughput amide deuterium exchange-mass spectrometry (DXMS) determination of protein binding site structure and dynamics: utility in pharmaceutical design. J. Cell. Biochem. Suppl. Suppl 37, 89–98.
# load example data dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) # prepare dataset for states `CD160` and `CD160_HVEM` # in given time parameters calc_dat <- prepare_dataset(dat, in_state_first = "CD160_0.001", chosen_state_first = "CD160_1", out_state_first = "CD160_1440", in_state_second = "CD160_HVEM_0.001", chosen_state_second = "CD160_HVEM_1", out_state_second = "CD160_HVEM_1440") # plot Woods plot - theoretical & relative woods_plot(calc_dat = calc_dat, theoretical = TRUE, relative = TRUE, confidence_limit = 0.98, confidence_limit_2 = 0.99) # plot Woods plot - experimental & relative woods_plot(calc_dat = calc_dat, theoretical = FALSE, relative = TRUE, confidence_limit = 0.98, confidence_limit_2 = 0.99) # plot Woods plot - theoretical & absolute woods_plot(calc_dat = calc_dat, theoretical = TRUE, relative = FALSE, confidence_limit = 0.98, confidence_limit_2 = 0.99) # plot Woods plot - experimental & absolute woods_plot(calc_dat = calc_dat, theoretical = FALSE, relative = FALSE, confidence_limit = 0.98, confidence_limit_2 = 0.99)
# load example data dat <- read_hdx(system.file(package = "HaDeX", "HaDeX/data/KD_180110_CD160_HVEM.csv")) # prepare dataset for states `CD160` and `CD160_HVEM` # in given time parameters calc_dat <- prepare_dataset(dat, in_state_first = "CD160_0.001", chosen_state_first = "CD160_1", out_state_first = "CD160_1440", in_state_second = "CD160_HVEM_0.001", chosen_state_second = "CD160_HVEM_1", out_state_second = "CD160_HVEM_1440") # plot Woods plot - theoretical & relative woods_plot(calc_dat = calc_dat, theoretical = TRUE, relative = TRUE, confidence_limit = 0.98, confidence_limit_2 = 0.99) # plot Woods plot - experimental & relative woods_plot(calc_dat = calc_dat, theoretical = FALSE, relative = TRUE, confidence_limit = 0.98, confidence_limit_2 = 0.99) # plot Woods plot - theoretical & absolute woods_plot(calc_dat = calc_dat, theoretical = TRUE, relative = FALSE, confidence_limit = 0.98, confidence_limit_2 = 0.99) # plot Woods plot - experimental & absolute woods_plot(calc_dat = calc_dat, theoretical = FALSE, relative = FALSE, confidence_limit = 0.98, confidence_limit_2 = 0.99)